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ABSTRACT 

We explore the effectiveness of spectrographic cross-correlation (SPCC) combined with 
principal coordinates (PCO) analysis as a method for sound comparison. We do this 
using synthetic sounds modeled after the individually-distinctive, harmonically-rich 
contact calls of wild orange-fronted conures Aratinga canicularis. Calls with acoustic 
properties similar to Aratinga contact calls are common in other taxa including non­
oscine birds, primates and cetaceans. We generated signals with known variations in 
time-frequency pattern, duration, noise level, harmonic content and harmonic weight­
ing, and applied SPCC-PCO analysis to obtain an ordering of sounds in n-dimensional 
space. We find that shared time-frequency patterns dominate the positioning of 
sounds in PCO space. This was true despite high variability in signal-to-noise ratio 
(from -60 to +40 dB) and duration (150-275 ms). Furthermore, inclusion of naturally­
weighted harmonics (versus fundamentals only) enhances, rather than obscures, the 
separation of call types. We conclude that SPCC-PCO is an effective method for 
sorting sounds based on overall time-frequency pattern. In addition, the resulting 
PCO measures can be used in statistical tests of association with extrinsic variables. 
The method is thus an effective starting point for examining most bioacoustic 
hypotheses. 

Key words: spectrographic cross-correlation, principal coordinates analysis, sound 
comparison, parrot vocalizations, sound synthesis 

INTRODUCTION 

Comparison and classification of animal sounds is a common task in 
bioacoustic research. Typically researchers perform detailed com­
parison of sound spectrograms and look for correlations between sound 
time-frequency structure and a variety of extrinsic contextual 
variables. Researchers might be interested in identifying a relation-

*E-mail: kac53@cornell.edu 
tE-mail: jwb25@cornell.edu 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Sa

sk
at

ch
ew

an
 L

ib
ra

ry
] 

at
 0

0:
50

 1
1 

O
ct

ob
er

 2
01

2 



90 

ship between sound structure and the habitat or social context in 
which sounds are used. Or, they may ask whether calls recorded from 
the same individual, social group, or geographic population are 
structurally more similar to each other than they are to calls from 
different individuals, groups, or populations. Still other researchers 
might be interested in isolating the structural properties used by 
animals in their behavioral and/or perceptual classification of received 
sounds, or in relating signal structures to specific sound production 
and broadcasting mechanisms. 

How can one effectively compare and structurally categorize a 
set of sounds? Commonly used methods include: 1) comparison of 
sounds based on a set of measured signal time and frequency 
parameters; 2) comparison of sound spectrograms via spectrographic 
cross-correlation analysis; and 3) visual comparison of sound 
spectrograms by a trained human observer. In the first method, a large 
set of relatively standard time and frequency measures is collected on 
the sounds being classified. The presumption here is that by 
exhaustively measuring the sound data, important structural 
parameters are unlikely to be missed. The resulting data may be 
compacted via principal components analysis (PCA). PCA extracts 
dominant and uncorrelated compound measures from a larger set of 
potentially correlated measure data. One can then look for statistical 
associations between the PCA measures and the contextual variables 
of interest using analysis of variance (ANOVA), multivariate analysis 
of variance (MANOVA), or linear discriminant analysis (LDA). 

While a generally useful method for sound classification, the 
standard measure approach has its limitations. A finite set of 
measures, no matter how large, could still miss the structural features 
of a sound most closely associated with a particular context. 
Furthermore, the selection of measures is undoubtedly susceptible to 
researcher bias. Criteria for measure selection often include ease and 
speed of measurement, significance in prior studies, or likely relevance 
to specific conjectures. None of these criteria guarantee that a critical 
measure will be included. To circumvent this limitation, Clark et al. 
(1987) developed the method of spectrographic cross-correlation 
(SPCC) for sound comparison. Here, the time-frequency spectrograms 
of two sounds are cross-correlated and the peak correlation value is 
taken as a measure of sound similarity. The intent of SPCC analysis 
is to include all discernible structural features of the two sound 
spectrograms instead of limiting comparison to a predetermined and 
possibly incomplete set of measures. SPCC typically is used to 
generate a matrix of similarity values for each pair of signals in an 
ensemble. Multidimensional scaling (MDS) or cluster analysis tech­
niques are usually applied to the similarity matrix to identify sound 
groupings. Associations between sound groupings and contextual 
variables can then be examined. Alternatively, one can compare the 
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similarity matrix to a contextual hypothesis matrix of the same 
dimensions using a Mantel test (Mantel 1967, Schnell et al. 
1985). 

Finally, visual inspection is a widely used method for classifying 
sound spectrograms into groups. While the visual criteria observers 
use in classifying a particular set of sounds are rarely specified, the 
fact that multiple observers converge on similar classification schemes 
suggests that major structural similarities (at least in the sense of 
human perception) are being identified. It remains unlikely however, 
that a visual observer weighs all spectrographic features equally in 
making classification decisions. Thus there is an inherent subjectivity 
in this method not present in SPCC. And, there is no guarantee that 
those features that the observer weighs most heavily in assigning 
categories are also the ones most correlated with the contextual 
variable of interest. The human eye is a superb integrator of infor­
mation, however. Visual inspection may incorporate a larger fraction 
of the available signal data than does the standard measure approach. 

There is continued debate in the literature about the 
appropriate use of these and other alternative methods of sound 
comparison. Nowicki and Nelson (1990) compared three techniques for 
identifying natural categories among notes in the call of the black­
capped chickadee: 1) multidimensional scaling applied to similarity 
values obtained from spectrographic cross-correlation; 2) visual sorting 
by human observers; and 3) k-means cluster analysis applied to 
principal component scores obtained from 14 acoustic measures. They 
found that all three methods produced generally consistent results. 
The greatest agreement was between SPCC-MDS and visual 
classification. Janik (1998) compared four techniques for classifying 
the fundamental contours extracted from the harmonically-rich 
signature whistles of bottlenose dolphins: 1) visual sorting by a human 
observer; 2) a method developed by McGowan (1995) which normalizes 
contours in duration and applies PCA and k-means cluster analysis to 
successive frequency measures; 3) hierarchical cluster analysis applied 
to SPCC similarity values; and 4) hierarchical cluster analysis applied 
to measures of average difference in absolute frequency. Janik found 
that visual inspection performed best at producing a classification 
scheme consistent with the individual identity of isolated dolphins. 
The alternative methods gave classifications less correlated with this 
contextual variable. He suggested that the other methods failed, in 
part, because they gave equal weight to each section of the contour in 
their similarity assessment. As a result, their classifications either 
reflected spectrographic details that were unimportant to the overall 
pattern, or did not reflect brief but visually important pattern 
differences. Finally, Khanna et al. (1997) examined the performance of 
spectrographic cross-correlation on a set of simple synthetic sounds. 
They found that the correlation values produced by this method were 
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sensitive to the size of the analysis window, that is, the fast Fourier 
transform (FFT) length, used for spectrogram generation. Depending 
on the FFT length used, the peak correlation values produced by SPCC 
systematically strayed from the theoretically expected values when 
comparing signals of either different duration or different overtone 
content. Furthermore, they found that the correlation value between 
two identical signals decreased as the background noise level of one of 
the signals increased. Ultimately, they concluded that SPCC analysis 
should be used only for simple sounds with no ambient noise and no 
significant overtone content. Furthermore, they implied that the 
results of SPCC analysis could be unreliable when comparing sounds 
with different duration. Their recommendations have been widely 
cited and many researchers now avoid the technique completely. Those 
who continue to use SPCC analysis in spite of this face reviewers who 
are apprehensive and mistrustful of the method. 

Admittedly, the debate is open as to which sound comparison 
technique is best suited to a particular research question. The Khanna 
et al. (1997) paper however, has had the effect of invalidating SPCC 
altogether as a suitable technique for sound comparison. While we do 
not question their results, we d0 question the interpretation by 
Khanna et al. of those results and their proscription against the use 
of SPCC. A key point, and one that we feel was never made explicitly 
clear in their paper, is that the interaction between cross-correlation 
value and FFT length that they observed is simply the expected effect 
of their particular choice of analysis window size for spectrogram 
generation. It is not a failing of SPCC analysis per se. Their paper 
reconfirmed the well-known time-frequency trade-off inherent in 
Fourier series representation of signals (see for example Bracewell 
1986, Beecher 1988, Bradbury and Vehrencamp 1998). And it rightly 
demonstrated, and cautioned, that SPCC analysis is not immune to 
the effects of this trade-off. Their paper, however, demonstrates no 
innate flaw with SPCC, and it never really examines the utility of 
SPCC analysis per se as a method for sound classification. Despite the 
obvious fact that SPCC cannot escape the time-frequency inaccuracies 
inherent in Fourier analysis, as is true with any method of sound 
comparison based on spectrograms (including visual classification), we 
contend that it can still be used effectively for the objective comparison 
of sounds. 

In this paper, we explore the utility of spectrographic cross­
correlation for sound classification as part of a novel technique based 
on SPCC combined with the method of principal coordinates analysis 
(PCO). Beginning with an SPCC similarity matrix, PCO analysis lets 
one obtain latent composite measures specifying the position of sound 
objects in n-dimensional space. We explicitly examine the effects of 
varying duration, background noise level, and harmonic content on the 
signal classification schemes resulting from the SPCC-PCO method. 
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We do this using a set of synthetic test signals modeled after the 
naturally occurring contact calls of wild orange-fronted conures 
Aratinga canicularis; calls which are harmonically rich and in­
dividually distinctive in their time-frequency patterns. Though our 
sounds are modeled after parrot calls specifically, they provide a good 
model for the harmonically-rich, individually variable signals seen so 
widely in primates, cetaceans and non-oscine birds (Sebeok 1977, 
Kroodsma and Miller 1996, Snowdon and Hausberger 1997). Such 
signals are now the focus of extensive research. 

Though rarely seen in the bioacoustic literature, PCO is a data 
reduction and embedding (ordination) technique used widely in 
ecology (Gower 1987, Legendre and Legendre 1998). PCO has many 
parallels with the better-known method of principal components 
analysis. Both techniques involve the eigen-decomposition of a square 
symmetric matrix to obtain a new set of orthogonal measures for an 
ensemble of sound objects. In PCO, as in PCA, the first few measure 
axes provide the best approximation to the original matrix. The 
difference is that PCA works on the variance-covariance matrix for a 
set of raw sound measures, while PCO works on the overall similarity 
matrix of the sound objects themselves. Thus, PCO decomposes an 
object-by-object similarity matrix (such as that generated by SPCC) 
into a set of latent orthogonal object measures. SPCC combined with 
PCO analysis provides not only visual groupings of sounds (like cluster 
analysis), but also a set of independent measures against which the 
association of extrinsic contextual variables can be measured (unlike 
cluster analysis). The combination of SPCC and PCO may thus provide 
a solution to Janik's (1998) concerns about SPCC-cluster analysis 
methods. 

We explore the efficacy of the SPCC-PCO method on a variety of 
test sounds designed to vary systematically from one another with 
respect to time-frequency pattern, duration, ambient noise level, or 
harmonic content. The results demonstrate that the combination of 
SPCC and PCO is surprisingly robust in its ability to separate the 
effects of shared time-frequency pattern from those of noise, duration, 
and harmonic variation. Where appropriate, we use multivariate 
statistics to show the significance of the classifications provided by 
this method. 

METHODS AND MATHEMATICAL BACKGROUND 

Synthesis methods and test signal sets 

For our SPCC-PCO analyses, we constructed synthetic facsimiles of 
the harmonically rich contact calls of wild orange-fronted conures 
Aratinga canicularis using sound synthesis tools available in the 
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program Signal v.3.0 (Engineering Design). The program was run on 
a 90 MHz Pentium computer (Gateway 2000, P5-90). Wild-caught 
birds, held captive in Costa Rica during June-August of 1997 and 
1998, were recorded using directional microphones (Sennheiser, model 
MKH 816 P84) and Hi-8 mm video camcorders (Canon, models ES2000 
and ES2500). The recorded contact calls were acquired at a sampling 
rate of 40 kHz using the real-time spectrogram program RTS v.2.0 
(Engineering Design), after filtering the signals from 90Hz-11kHz 
through a bandpass filter (Krohn-Hite, model 3550). The spectrograms 
for the original contact calls and synthetic copies used in this study 
were generated in Signal using a 256-point fast Fourier transform 
length, with a Hanning window function and a fixed step size between 
windows of 0.64 ms (corresponding to a 90 % window overlap). The 
Aratinga contact call is a single continuous note of roughly 200 ms 
duration whose signal energy lies primarily in the frequency range 
from 500 Hz to 8 kHz. The call has a complex frequency structure with 
at least 10 apparent overtones in its dominant frequency range. Since 
we have yet to find simultaneous components in Aratinga contact calls 
that are not integer multiples of each other, we shall refer to them 
below as harmonics. The contact call can be divided into three 
contiguous subunits based on its time-frequency spectrogram: 1) an 
initial region in which the fundamental ascends from 500 Hz to 1.5 
kHz; 2) a middle region in which the fundamental undergoes rapid, 
stepwise frequency modulations between 3 and 6 kHz; and 3) a final 
region in which the fundamental descends from 1 kHz to 500 Hz. 

During the captive study period, each bird produced its own 
unique signature contact call vocalization. For each harmonic signal 
that we synthesized in the current study, the spectrogram of an actual 
Aratinga contact call vocalization was used as a template. We used a 
combination of the Signal "peak ft" and "draw" utilities to trace out the 
fundamental frequency contour, or first harmonic fl(t), to be used in 
constructing the synthetic signal. We constructed the amplitude 
weighting functions for each of the desired harmonic components of 
the synthetic signal from the spectrogram of the actual animal 
vocalization using the "amp ft" utility. The synthetic contact-call-like 
signal x(t) was then assembled from n-m+1 time components Xk(t), 
each generated from the time-frequency contour fk(t) = kfl(t) of a 
desired harmonic component k and its corresponding amplitude 
weighting function ak(t) (where k = m, ... , n, m = the first harmonic to 
be used, and n = the last): 

n 
x(t) = L: xk (t) 

k=m 
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For all of our synthetic signals, the first harmonic m = 1 and the last 
harmonic n = 15. Because extremely high buffer sampling rates had to 
be used to accommodate some of the frequencies in the highest 
harmonic components, once a synthetic signal was assembled, it was 
digitally lowpass filtered in Signal using a 16 kHz cutoff and the 
sampling rate was decimated to 40 kHz. K.A.C wrote numerous 
custom programs in the Signal command language to automate 
assembly and manipulation of the synthetic signals and to automate 
spectrographic analysis and cross-correlation. 

In order to characterize the performance of our analysis method, 
we constructed a variety of sample sound sets with signals based on 
naturally occurring Aratinga contact calls. The signals in each set 
varied systematically with respect to a particular signal parameter 
and thus had quantifiable similarities and differences. Five sets of 
model signals were generated. The first sample set contained signals 
that either possessed the same time-frequency pattern (i.e., 
fundamental contour, number of harmonics, and harmonic weighting 
functions) and varied in duration, or possessed the same duration and 
varied in time-frequency pattern. The second set contained signals 
that either possessed the same time-frequency pattern and varied in 
signal-to-noise ratio, or possessed the same signal-to-noise ratio and 
varied in time-frequency pattern. The third set contained signals that 
either possessed the same time-frequency pattern and varied in 
duration and/or signal-to-noise ratio, or possessed the same duration 
and/or signal-to-noise ratio and varied in time-frequency pattern. The 
fourth sample set consisted of three subsets whose signals possessed 
the same time-frequency patterns, durations, and signal-to-noise 
ratios, but varied in harmonic content and harmonic weighting 
between subsets. The first subset contained signals composed of the 
fundamental contour (first harmonic) only, with flat amplitude 
weighting. The second subset contained signals composed of harmonics 
1-15 with flat amplitude weightings applied to all harmonics. The 
third subset contained signals composed of harmonics 1-15 with 
natural amplitude weightings applied. The final sample set consisted 
of signals that varied ("morphed") uniformly in overall time-frequency 
structure from one signal type to a second different signal type. 
Specific parameters used in generating each sample sound set are 
detailed in the Results section when that set is discussed. 

Spectrographic cross-correlation 

We used Signal to calculate peak spectrographic cross-correlation 
coefficients and generate a matrix of similarity values between all 
signals in a sample set. Signal uses the formula 
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to calculate the cross-correlation function R(T). In all cases, we used 
matrix-based normalization where x, y, ax, and a y are the means and 
standard deviations for the entire spectrogram matrices. The 
maximum time offset for correlation calculation was set to 100% of the 
signal durations; the frequency range for correlation calculation was 
200Hz-10kHz. A custom command program was written to generate 
the matrix of peak cross-correlation values for any arbitrary-sized set 
of sound signals. Since the matrix of peak cross-correlation values is 
square symmetric, we reduced computation time by calculating only 
the lower-triangular matrix plus the diagonal. For a data set of n 
sounds, this amounts to the calculation n(n+1)/2 rather than n2 values. 
The custom program checks that all spectrograms being correlated 
have the same sampling rate, duration, and time-frequency resolution. 
To obtain the same duration for all spectrograms being cross­
correlated, the signals within a data set were compared and zero­
padded to the length of the longest signal before their spectrograms 
were generated. 

As stated before, all spectrograms used in our study were 
generated using a 256-point fast Fourier transform length. For our 
sounds (sampled at 40 kHz), this was the FFT length that provided a 
suitable balance between time and frequency domain representation 
as judged through visual inspection. That is, for all our sounds we 
attained good separation of signal harmonic components while still 
seeing signal frequency modulation patterns represented in the time­
domain. For our work, a 256-point FFT length brought out the level of 
spectrogram structure most suitable for call comparison. In fact, the 
spectrographic structure of our calls was similar for a range of FFT 
lengths around 256. Harmonic contours became fatter or thinner with 
shorter or longer FFT lengths, but we still attained the same basic 
spectrogram patterns-patterns that were a good balance between 
time and frequency domain representation of the sounds. 

Principal coordinates analysis 

The technique of principal coordinates analysis, sometimes referred to 
as classical multidimensional scaling, allows one to calculate the 
geometric coordinates of data objects in an n-dimensional space given 
a matrix of similarities or distances between those objects (Gower 
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1966, 1987, Neff and Marcus 1980, Everitt and Dunn 1991, Wong and 
Bergeron 1997, Legendre and Legendre 1998). The analysis calculates 
the coordinates of the objects in such a way that the first principal 
coordinate axis provides the best first-order approximation to the 
original inter-object distances. Addition of the second axis provides the 
best second-order approximation, and so on. Thus, in addition to 
providing a classification scheme based on the geometric arrangement 
of objects in PCO space, this method provides a set of independent 
measures for each sound object, the PCO values. These PCO values 
can be used like any other structural measure to test hypotheses about 
sounds and extrinsic variables. For the interested reader, the 
Appendix at the end of this paper provides a discussion of the 
mathematical rationale behind the PCO method. 

The new PCO axes are computed by extracting the eigenvalues 
and eigenvectors of a matrix whose elements are equal to a 
transformation of the original inter-object distance values. If the 
distances measured between the objects are truly Euclidean, all of the 
eigenvalues will be positive. If they are not Euclidean however, some 
of the eigenvalues will be negative resulting in imaginary coordinates. 
In practice, this is not a problem provided that the negative 
eigenvalues are small in magnitude (Neff and Marcus 1980, Gower 
1987, Everitt and Dunn 1991). If there are numerous large negative 
eigenvalues however, the use of principal coordinates analysis is 
inappropriate and the method of metric or non-metric 
multidimensional scaling (MDS) should be used instead (Kruskal and 
Wish 1978, Everitt and Dunn 1991). When appropriate, the use of 
principal coordinates analysis for embedding objects in geometric 
space is preferred over multidimensional scaling. Since object 
coordinates are calculated by direct matrix algebra in PCO, rather 
than an iterative process as in MDS, most statistical packages have no 
matrix size limit for PCO whereas MDS is usually limited to small 
matrices. In our experience, the two methods give similar ordinations 
when applied to the same data set. 

The number of dimensions d in PCO space that are needed to 
provide an accurate representation of the original inter-object 
distances can be determined using a number of different relationships 
provided in the literature (for example, see Gower 1987, Everitt and 
Dunn 1991, Wong and Bergeron 1997). We use the relationship 

d 

~)-i 
i=l 
p 

~)i 
i=l 

to quantify the degree of accuracy of the representation in PCO space, 
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where AI, ... , Ad are the first d positive eigenvalues used in the 
approximation and AI, ... , Ap are all the positive eigenvalues (Wong and 
Bergeron 1997). 

Thus, starting from a similarity or distance matrix only, 
one can generate coordinates in n-space for a given set of 
sound objects. Furthermore, these coordinates (the PCO values) 
provide a set of intrinsic measure variables for the objects that would 
otherwise not have been available. This is a major advantage of PCO 
over cluster analysis. By viewing the sound objects plotted in the first 
two or three principal coordinate axes, provided these dimensions 
account for enough of the overall inter-object distance, we can 
intuitively assess overall object relatedness from geometric 
proximities. We used the R-Package routine "PCoord" (developed for 
the Macintosh by Philip Casgrain at the University of Montreal, 
http://alize.ere.umontreal.ca/-casgrain!R) to calculate the principal 
coordinate values for each set of sound data from the matrix of peak 
SPCC values. 

Statistical tests of association 

Given that they have approximately normal distributions and similar 
variances and covariances, we can use any subset of the PCO 
measures generated for a set of sounds in multivariate statistical tests 
of association. Associations of PCO values with categorical extrinsic 
variables can be examined with multivariate analysis of variance 
(MANOVA) or linear discriminant analysis (LDA). MANOVA provides 
standard variance partitioning tables, whereas LDA allows one to use 
bootstrap methods such as cross-validation to test for robustness of the 
classification. MANOVA and LDA are robust to skew in the data, but 
are sensitive to outliers and kurtosis (Tabachnick and Fidell1996). We 
have found that the PCO distributions from field samples of conure 
calls rarely have outliers but do tend to be platykurtic, that is, to have 
flattened distributions compared to the normal distribution. As long as 
the sample sizes per factor level are similar, platykurtosis makes it 
harder to obtain a significant result using MANOVA or LDA (Sharma 
1996, Tabachnick and Fidell 1996). These tests are thus conservative. 
Both methods compute linear combinations of the continuous 
variables, called canonical variates, which maximally segregate calls 
according to the alternative factor levels. The canonical variates are 
essentially linear transformations of the PCO coordinates, and thus 
constitute a rotation of the PCO axes. From the new rotational 
perspective, calls in the same factor level appear maximally clustered 
with each other. The relative positions of the calls in PCO space are 
unchanged by the rotation. When the assumptions underlying 
canonical variate analysis cannot be accepted, logistic regression can 
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be used instead. Where extrinsic variables were continuous, we also 
used analysis of covariance (ANCOVA) or multiple linear regression as 
appropriate. Statistics were run on either the JMP (version 3.2, SAS 
Institute) or SPSS (version 8.0, SPSS Inc.) statistical packages. 

RESULTS 

Examination of FFT length issues 

Before presenting our results using the SPCC-PCO method for sound 
classification, we feel it is important to explicitly characterize the 
effects of FFT length on spectrogram structure. We do this using the 
synthetic test sounds of Khanna et al. (1997). These sounds were 
replicated using Signal as described in their paper. Our intention is 
not to rebut or invalidate the work of Khanna et al. We wish merely 
to show that SPCC values are simply, and above all, a reflection of the 
structural information available in the spectrograms used. And we 
wish to fully elucidate why we continue to accept SPCC as a valid 
method of sound comparison. 

First, Khanna et al. (1997) examined the SPCC values generated 
when pure-tone signals of the same frequency but different duration 
were correlated. In this test, and all others we discuss in this section, 
sounds had a 20 kHz sampling rate, and the frequency range used for 
SPCC analysis was 1-8kHz. As expected, Khanna et al. found that the 
ratio of signal durations, measured as note length ratio (NLR), and not 
absolute difference in duration, determined sound similarity. They 
also found, however, that longer FFT frame lengths resulted in 
slightly, but systematically higher, SPCC values than theoretically 
expected. They reported this as a sensitivity of SPCC to choice of 
analysis window (i.e., FFT) length when signal durations varied. We 
replicated their analyses and examined each spectrogram before 
generating peak SPCC values. Using a threshold of -60 dB from the 
peak amplitude value to estimate the beginning and end of sound 
spectrograms, we found that FFT frame size directly alters effective 
note length ratio. The consequent SPCC values faithfully reflect these 
changes in spectrogram NLR but were otherwise independent of frame 
SIZe. 

This change in effective note length ratio is directly predictable 
from Fourier transform theory. Longer FFT length translates directly 
into a longer M, that is, a wider time bin, for spectrogram generation. 
Thus, the longer the FFT length the more the signal energy is smeared 
out in time. Precise resolution of signal temporal features will be 
impossible. For example, Khanna et al. compared two 4-kHz notes, one 
with a duration of 1000 ms and the other with a duration of 100 ms. 
In their study, and our replicate, spectrograms of the two notes were 
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generated using an 8192-point FFT and a 32-point FFT. At an FFT 
size of 8192 points, the spectrogram of the 1000 ms tone shows a 
duration of 1309 ms. That of the 100 ms tone shows a duration of 431 
ms. At an FFT size of 32 points, the spectrogram of the 1000 ms tone 
shows a duration of 986 ms. That of the 100 ms tone shows a duration 
of 92 ms. Thus, longer FFT lengths for spectrogram generation make 
these two signals appear more similar in duration than they really are. 
For this pair of sounds, spectrographic NLR is equal to 0.09 for the 32-
point FFT and 0.33 for the 8192-point FFT, compared to the 
theoretical NLR of 0.1 based on actual time waveform durations. The 
computed SPCC values reflect this change in NLR and thus increase. 
Similar results were found for all other comparisons in the duration 
tests. Figure 1 shows the effective NLR ratios (lb) for note 
combinations considered by Khanna et al. and the corresponding 
SPCC values (la) taken from Table 1 of their paper. The average 
correlation coefficient between effective NLR and corresponding SPCC 
value across all 10 contrasts in their Table 1 was r = 0.96 (range 0.89-
0.99). We conclude that the differences in SPCC value with FFT frame 
length are entirely a by-product of changes in the spectrogram NLR 
values; the SPCC process itself adds no additional errors. 

Khanna et al. (1997) also reported that when the spectrograms 
of two equal-duration signals, each possessing a different-valued set of 
component frequencies, were cross-correlated, shorter FFT frame sizes 
resulted in systematically higher peak correlation values. Further­
more, the expected correlation values were achieved at frame sizes 
twice that necessary, in theory, to resolve the harmonic components. 
The first effect, again, is predictable from Fourier transform theory. 
Shorter FFT length translates directly into a larger /¥, that is, a wider 
frequency band for spectrogram generation. Thus, the shorter the FFT 
length the more the signal energy will be smeared out in frequency. 
Precise resolution of signal spectral features will be impossible. Figure 
2 shows the spectrograms of two of the signals used in Khanna et al.'s 
test of cross-correlation frequency sensitivity. As in their paper, 
spectrograms of the two notes, one containing frequencies of 2200, 
2400, and 2600 Hz and the other containing frequencies of 2000, 2500, 
and 3000Hz, were generated using a 256-point FFT (Figure 2a,b), and 
a 2048-point FFT (Figure 2c,d). A frame size of 256 points should 
theoretically provide just enough frequency resolution (/¥ = 78 Hz at 
a 20 kHz sampling rate) to separate the different component fre­
quencies in the two signal types. However, it is apparent from Figure 
2a,b that there is considerable spectral smearing and overlap of the 
frequency content of the two spectrograms at this FFT length. 
Although not plotted here, spectrograms show much better separation 
of frequency content at the next higher frame size of 512 points. The 
2048-point FFT length used for the spectrograms in Figure 2c,d easily 
resolves the frequency components and the SPCC values Khanna et al. 
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obtained for these spectrograms are exactly as expected. Given the 
increased spectral smearing that occurs at shorter FFT lengths, it 
makes sense that shorter FFT lengths result in systematically higher 
peak correlation values. Thus, their only remaining puzzle with 
overtone-rich sounds was the need to use frame sizes at least twice the 
theoretical size to obtain expected SPCC values. Again, this deviation 
is not due to SPCC. Instead it is due to the finite duration windowing 
inherent in discrete time Fourier transformation. Whether rectangular 
or cosine-based (i.e., Hanning or Hamming) such windowing is known 
to shift effective analysis bandwidths to higher values than the 
theoretical value of !:Jf =liM. The loss of effective frequency resolution 
from windowing is due to the smearing that occurs when the spectrum 
of the signal is convolved with the spectrum of the analysis window. 
The interested reader is referred to Oppenheim and Schafer (1989) 
section 7.4. Consequently, one must use FFT lengths longer than the 
theoretical minimum before the desired frequency resolution is 
obtained in spectrograms. Again, the effects reported by Khanna et al. 
do not arise from SPCC analysis in itself, but from a failure to use 
appropriate analysis bandwidths so that spectrograms resolve the 
temporal or spectral features of interest. 

Khanna et al.'s (1997) tests of SPCC analysis on frequency 
modulated (FM) signals showed no apparent anomalies. As discussed 
by Beecher (1988), optimal representation of FM in spectrograms 
occurs at intermediate bandwidths where the effective !:Jf is small 
enough to identify the modulated frequencies accurately, but not so 
small that the time pattern is lost and the modulation is broken fully 
into its frequency domain components. Their FM test of SPCC 
basically confirmed Beecher's conclusions. Making allowances for 
windowing effects, the peak SPCC values obtained by Khanna et al. 
are as one would expect. 

Thus, we were unable to find any anomalous effects of varying 
FFT length on SPCC analysis. The effects described by Khanna et al. 
(1997) as SPCC sensitivity to analysis bandwidth are in fact solely 
consequences of spectrogram resolution, that is, the time-frequency 
inaccuracy introduced by the discrete-time Fourier analysis of signals. 
If the spectrograms show no resolution of a signal temporal or spectral 
feature, SPCC analysis does neither better nor worse. 

Synthetic parrot sounds 

I. Duration series 

While SPCC analysis itself does not introduce artifacts when 
comparing signals of varying duration, it is unclear whether 
differences in signal duration might obscure overall similarities or 
differences in spectrographic time-frequency pattern. The sensitivity of 
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Figure 3. Spectrograms of actual Aratinga contact calls (3a,c,e) and their 
synthetic replicas (3b,d,f). The individuals and call types are Thalia (3a,b), Randy 
(3c,d), and Thoreau (3e,f). 

comparison techniques to the time expansion and compression of 
signals is of concern to many researchers, especially those working 
with cetacean sounds (Reiss and McCowan 1993, McCowan 1995). 
Methods have been suggested that employ either linear or nonlinear 
time normalization (time-warping) before signal comparison (Buck and 
Tyack 1993, McCowan 1995). As a first step in exploring the efficacy 
of SPCC-PCO, we wished to determine its sensitivity to the expansion 
and contraction of signal duration. Specifically, we wished to 
determine if the method sorted signals according to shared time­
frequency pattern or shared duration. We examined this issue using 
the contact calls of three Aratinga individuals. The contact call 
spectrograms of these three individuals, Randy, Thalia, and Thoreau 
(Figure 3a,c,e) are clearly distinct from one another and possess 
individually unique time-frequency signatures. The synthesized 
replicas of these contact calls are shown in Figure 3b,d,f. A custom 
command program generated the appropriate harmonics from the 
fundamental contour, extracted the harmonic amplitude weighting 
functions from a spectrogram of the original call, expanded or 
contracted the durations of the harmonics and amplitude weighting 
functions, and then weighted and assembled all components of the 
synthetic sound. In this way, we constructed a set of 33 sound signals 
that were either identical in their global time-frequency pattern but 
different in duration, or different in their global time-frequency 
pattern but identical in duration. Signal durations ranged from 150 ms 
to 275 ms in increments of 12.5 ms. We also included the three signals 
of unaltered duration equalling 178 ms for the Randy call type, 
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Figure 4. Examples from the 
duration series for the Randy call 
type. Durations equal150 ms ( 4a), 
200 ms (4b), and 275 ms (4c). 

220 ms for the Thalia call type, and 243 ms for the Thoreau call type. 
This made a total of 36 sound signals in the duration series. Figure 4 
shows examples from the time duration series for the Randy call 
type. 

Spectrograms were generated for all 36 sounds using the 
analysis window size (256 points) that we felt provided the best time 
and frequency domain display of signal structure. The sound 
spectrograms were cross-correlated and principal coordinates analysis 
was applied to the resulting matrix of peak correlation values. Figure 
5a shows a three-dimensional scatter of the sound objects plotted on 
the first three PCO axes which together account for 68% of the original 
inter-object distances. The figure also shows two-dimensional scatter 
plots of PCOl and PC03 versus PC02 (Figure 5b,c), and scatter plots 
of the first three PCO measures versus signal duration in milliseconds 
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(Figure 5d-f) and call type (Figure 5g-i). Although there is systematic 
spread of the sound objects associated with duration change, the three 
call types clearly cluster into their own distinct regions of three­
dimensional PCO space. Furthermore, the nearest neighbor to any 
sound object in PCO space is that sound of the same call type with the 
most similar duration. Thus, the geometric embedding of sounds 
reflects the sequential ordering of duration within each call type. 
Despite a 125 ms spread in duration, the three call types can still be 
sorted from one another. Statistically, PC01 provided perfect 
separation of signals according to call type, but was unrelated to signal 
duration (ANCOVA: call type: F2,20 = 1704, P < 0.0001; relative 
duration: F 10,20 = 0.11, NS). PC03, in contrast, was significantly 
correlated with duration (entered as percent of the unaltered signal 
duration), but not with call type (ANCOVA: call type: F2 20 = 0.39, NS; 
relative duration: F10 20 = 7.46, P < 0.0001). These t~o coordinates 
separated overall tim'e-frequency pattern from signal duration and 
provided an independent measure of each. 

II. Noise series 

A second aspect we wished to examine was how the analysis method 
performed in the presence of noise. It has been shown that peak SPCC 
values decrease systematically as signal-to-noise ratio (SNR) decreases 
when a clean reference signal is correlated with a noisy version of the 
same signal (Khanna et al. 1997). We wished to see whether SPCC 
combined with PCO might permit the extraction ·of basic time­
frequency patterns from common background noise levels. We used the 
three distinct call types of the prior section and added different 
amounts of uniform random noise generated using the Signal "ran" 
function. A custom command program was written to normalize the 
root-mean-square (RMS) amplitude of the sound signal (working 
directly on the time waveform), and generate buffers of uniform 
random noise. These noise buffers were normalized and appropriately 
scaled so that they resulted in specified signal-to-noise ratios when 
added to the sound signal. A new random noise buffer was generated 
for each new noisy signal we constructed so that the noise between 
signals remained truly random. In this way, we constructed a set of 66 
sound signals that were either identical in their global time-frequency 
pattern but different in signal-to-noise ratio, or different in their global 
time-frequency pattern but identical in signal-to-noise ratio. The 
sounds had signal-to-noise ratios (measured using V rms values) 
ranging from -60 to +40 dB increasing in increments of 5 dB. This set 
also contained the three unaltered sounds which had infinite signal-to­
noise ratios. Figure 6 shows examples from the series of noisy signals 
for the Thalia call type. 
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Figure 6. Examples from the noise 
series for the Thalia call type. Signal­
to-noise ratios equal -20 dB (6a), 0 
dB (6b), and +20 dB (6c). 

All 66 sound spectrograms were cross-correlated and the 
ordering of the ensemble was examined in PCO space. Figure 7 shows 
a three-dimensional scatter of the sounds plotted on the first three 
principal coordinate axes (7a) which together account for 52% of the 
original inter-object distances. It also shows two-dimensional scatter 
plots of PCOl and PC02 versus PC03 (7b,c), and scatter plots of the 
first three PCO measures versus signal-to-noise ratio in dB (7d-0 and 
call type (7g-i}. Again, although there is systematic spread associated 
with change in signal-to-noise ratio, the three call types clearly occupy 
distinct regions of PCO space. For this ensemble, PCOl decreases as 
signal to noise ratio increases. The pattern of these points in 3-
dimensional PCO space is interesting. At the lowest signal-to-noise 
ratios (< -20 dB), the points for different call types lie close together. 
However, even at the lowest signal-to-noise ratio, there is no sound 
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whose nearest neighbor is the sound of another call type. As signal-to­
noise ratio increases, points for each call type follow separate 
trajectories radiating away from the convergent area and from the 
trajectories of other call types. For all 3 PCO coordinates, there is 
perfect separation of sound objects according to call type for signal-to­
noise ratios of -5 dB or higher. For PC01, there is, as well, perfect 
separation of sound objects according to call type for SNR less than 
-20 dB. Over the full 100-dB range of signal-to-noise ratios, PC02 
completely separates the Thoreau call type from those of the other two 
birds, and PC03 separates the Thalia call type from those of the other 
two birds. Although this data set is not normal by design, the PCO 
plots suggest that a random sample of calls from this series would 
separate completely according to call type were we to apply MANOVA 
or LDA analysis. 

III. Duration and noise series 

We next examined how SPCC-PCO analysis performed in the presence 
of both duration and noise fluctuations. For this sample set, we 
combined the three call types of the previous sections with those of 
seven other Aratinga individuals. Figure 8 shows the actual 
(8a,c,e,g,i,k,m) and synthetic (8b,d,f,hj,l,n) contact calls of these seven 
additional individuals, Diane, Eeyore, Emma, Hera, Jane, Pat, and 
Whitman. Again, the contact calls from different birds are clearly 
distinct from one another and from the contact calls of the three 
individuals shown in Figure 3. For all ten contact call types, we varied 
duration and signal-to-noise level using the techniques described 
above. This time, however, duration variations were kept within the 
ranges typical of real recordings. The standard deviation in contact 
call duration from individual Aratinga ranges from 5-7% of the mean. 
For each of the ten contact call . types therefore, we constructed 
synthetic calls that were 90, 95, 100, 105, and 110 % of their original 
durations. Then, for each of these expanded and contracted signals, 
uniform random noise was added to generate signal-to-noise ratios of 
-5, 0, +5, and +10 dB. As we saw in the previous section, this is the 
range of signal-to-noise ratios in which PCO values show the most 
spread and thus the most overlap between call types (Figure 7d). We 
also included the signals with no noise added. The resulting sample 
set included ten call types each with five signal durations (90 to 110% 
of the original duration) combined with five signal-to-noise ratios (-5 
to +10 dB, and infinity). Thus, the 250 sound signals were either 
identical in their global time-frequency pattern but different in 
duration and/or signal-to-noise ratio, or different in their global time­
frequency pattern but identical in duration and/or signal-to-noise 
ratio. We also included the ten actual field recordings after which the 
synthetic calls were modeled. A total of 260 spectrograms were thus 
generated and cross-correlated with one another. 
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Figure 8. Spectrograms of actualAratinga contact calls (8a,c,e,g,i,k,m) and their 
synthetic replicas (8b,d,f,hj,l,n). The individuals and call types are Jane (8a,b), 
Hera (8c,d), Diane (8e,f), Pat (8g,h), Whitman (8ij), Eeyore (8k,l), and Emma 
(8m,n). 

Figure 9 shows a three-dimensional scatter of the 260 sounds 
plotted on the first three principal coordinate axes (9a) which account 
for 41% of the original inter-object distances, two-dimensional scatter 
plots of PC01 and PC02 versus PC03 (9b,c), and scatter plots of the 
first three PCO measures versus call type (9d-f). Again, although there 
is systematic spread associated with changes in duration and signal­
to-noise ratio, the ten call types occupy clearly distinct regions of 
three-dimensional PCO space. Because of its large size and particular 
design, the PCO measures for this sample set approached normality, 
as would the measures for any typical ensemble of natural sounds. We 
thus performed MANOVA and LDA analyses using the first five PCO 
measures as dependent variables and call type (based on identity of 
the source bird) as a factor. The first five PCO measures account for 
57% of the original inter-object distances. The MANOVA analysis 
strongly rejected the null hypothesis of equal means (Wilk's A 
< 0.0001, F 45,1100 = 1732, P < 0.0001). All five canonical variates 
showed significant separation (P < 0.001), and LDA analysis correctly 
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classified 100% of the calls, even with cross-validation bootstrapping. 
Figure 9h shows a scatter plot of the sound objects on the first two 
canonical axes, with 95% confidence regions around the call-type 
centroids shown in Figure 9g. The 95% confidence regions are so small 
in this data set, that they are comparable to the size of the dots used 
to indicate the centroids. Thus, even in the face of temporal 
fluctuations and varying levels of random noise, the canonical 
separation of each of the ten different call types remains clear. 

N. Harmonics series 

We examined next how the presence of harmonics other than the 
fundamental affects the SPCC-PCO classification of sounds. It is a 
common practice among cetacean researchers to remove all harmonics 
except for the fundamental when comparing harmonically rich sounds 
(Buck and Tyack 1993, McCowan 1995, Janik 1999). In fact, based on 
their concerns around the analysis of over-tone rich signals, Khanna et 
al. (1997) suggest that is appropriate to compare only fundamental 
contours when using SPCC. However, the degree to which harmonic 
content affects the classification of sounds by SPCC has never been 
explicitly examined. We used a set of calls modeled after three conures 
(Emma, Eeyore, and Jane) to examine explicitly the effect of including 
naturally-weighted harmonics, as opposed to the fundamental contour 
only, on the ability of SPCC-PCO analysis to sort sounds based on 
common time-frequency pattern. Rather than using the same three 
call types as in sections I and II, we decided to randomly pick a new 
set of calls. This ensured that our results were not contingent on 
something peculiar to that first set. 

Three signal sets with different harmonic content and amplitude 
weighting were constructed. The first set of signals was made up of the 
fundamental contour only, with uniform (flat) amplitude weighting 
along the entire contour. We shall refer to this as the fundamental 
case. The second set was composed of the fundamental and next 14 
harmonics, with uniform amplitude weighting along the entire contour 
for all harmonics (the uniformly weighted case). The last set was 
composed of the fundamental and next 14 harmonics, with each 
contour for each harmonic weighted as in the original call spectrogram 
(the naturally weighted case). Each of the three signal sets contained 
synthetic sounds modeled after the three Aratinga call types. These 
signals were varied in duration (90% to 110% of the original) and 
signal-to-noise level (-5dB to +10 dB and infinity) as in section III. 
Thus, each of the sample sets contained a total of 75 signals. 

Separate SPCC similarity matrices were calculated for the 
fundamental, uniform weighting, and natural weighting cases. We 
then applied PCO analysis to each matrix and submitted the resulting 
principal coordinates to MANOVA analysis to assess how well 
spectrograms could be separated according to call type. All three 
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sample sets showed a statistically significant association between PCO 
coordinates and call type (P < 0.0001 in all three cases). Furthermore, 
the significance of the association increased with the number of 
successive PCO coordinates included in the analysis. For all sample 
sets, only the first two PCO measures were necessary to achieve 
significant separation. The three sample sets did differ, however, in 
the degree of significance of the group separations accomplished by 
MANOV A. To quantify this, we plotted Wilk's A versus the number of 
PCO measures included in the MANOVA analysis. Wilk's A decreases 
as the statistical significance between group separation accomplished 
by MANOVA increases. The plot in Figure lOa shows that signals 
composed of naturally weighted harmonics provide better group 
separation than do signals composed of only the uniformly weighted 
fundamental for up to five PCO coordinates. When more coordinates 
are included in the analysis, the fundamental and naturally weighted 
cases give similar resolution. Figure lOb compares the results for 
signals composed of uniformly versus naturally weighted harmonics. It 
is clear that naturally weighted harmonics provide much stronger 
associations between PCO coordinates and call type, and thus better 
classification based on call type, than do uniformly weighted 
harmonics. The fundamental case is not plotted in Figure lOb because 
on this scale it would completely overlap the naturally weighted case. 
Thus, the signal set composed of uniformly weighted harmonics does 
much worse at separating calls by time-frequency structure than do 

.008 .06 
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< 
Ul .004 .03 
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~ .02 
.002 

.01 

0 0 
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Figure 10. Plots ofWilk's A versus the number of principal coordinates included 
in the MANOV A analysis for three sets of sounds containing different numbers 
ofharmonics and harmonicweightings. Set one was composed of sounds containing 
the fundamental contour only with uniform weighting (open circles); set two 
sounds containing the fundamental contour plus the next 14 harmonics with 
uniform weightings (open squares); set three sounds containing the fundamental 
contour plus the next 14 harmonics with natural weightings (closed circles). 
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the signal sets composed of either the fundamental alone or naturally 
weighted harmonics. And, the signal set composed of naturally 
weighted harmonics does better than the signal set composed of the 
fundamental contour alone when classifying signals using only the 
first few PCO coordinates. 

V. Morphing series 

Finally, we wished to examine how the method performed with a set 
of signals that represented a continuous transition from one signal 
type to a second completely different signal type. Transitions in call 
types have been noted, for example, during new group formation in 
captive budgerigars (Farabaugh et al. 1994, Farabaugh and Dooling 
1996) and as part of the natural variation in the repertoires of some 
primates and cetaceans (Snowdon and Hausberger 1997). We knew 
from analysis of the previous sample sets that the SPCC-PCO method 
did well at grouping similar signal types for sets containing a few 
discrete time-frequency patterns. It was unknown, however, how it 
would array sounds in PCO space that showed continuous changes in 
time-frequency structure. The morphing series was an attempt to 
examine this question. 

We used synthetic signals modeled after the contact calls of 
Randy, Thalia, and Thoreau. In this case, we constructed two series of 
signals that resulted in both the Randy call type and the Thoreau call 
type metamorphosing into the Thalia call type. Each series consisted 
of the two endpoint call types and nine intermediate call types that 
moved between the endpoints in increments of 10%. This made a total 
of 21 signals in all for the morphing series. 

There are many ways in wqich two contact call types can be 
morphed from one into the other. To make an intermediate signal that 
is x% of call type B, starting from call type A, we selected the following 
procedure. First, we adjusted the duration of the endpoint harmonic 
contours and corresponding endpoint amplitude weighting functions to 
the appropriate intermediate duration. If call type A has duration TA 
and call type B has duration TB, this intermediate duration equals: 

Then, we calculated the appropriate weighted averages of the 
endpoint harmonic contours and the endpoint amplitude weighting 
functions for that intermediate. For example, the intermediate 
fundamental contour will equal x% of the type B fundamental plus 
(1-x)% of the type A fundamental. The amplitude weighting function of 
the intermediate fundamental contour will equal x% of the type B 
fundamental amplitude weighting function plus (1-x)% of the type A 
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fundamental amplitude weighting function, and so on. Finally, we 
assembled the intermediate signal from the appropriately calculated 
intermediate contours and weightings. In equation form, the signal 
which is x% of call type B starting from call type A equals 

~ (~aBk(t)+(1-~)aAk(t))(sin2nt(~ fBk(t)+(1-~)rAk<t>)) 
k~l 100 100 100 100 

x(TB -TA) 
where the durations of all functions equal T A + 

100 
. 

While there are other possible algorithms for morphing between 
two call types, simply averaging the two endpoint spectrogram 
matrices is not one of them. The spectrogram resulting from such an 
operation would not resemble a single, smoothly varying contact call 
type. Rather, it would resemble the discontinuous pattern of two 
overlapping contact calls. Figure 11 shows part of our transformation 
series taking the Randy (11a) and Thoreau (11e) call types to the 
Thalia (11i) call type. 

The 21 signals in the morphing series plus seven additional 
natural signal types (based on the individuals added in section III) 
were cross correlated and ordered using principal coordinates analysis. 
Figure 12 shows a three-dimensional scatter of the sounds plotted in 
the first three axes of PCO space (12a) which together account for 46% 
of the original inter-object distance. It also shows two-dimensional 
scatter plots of PC01 and PC03 versus PC02 (12b,c), and scatter plots 
of the first three PCO measures versus signal order in the morphing 
series (12d-f). The signals in the morphing series are ordered from 1 
to 11 beginning with either the Randy and Thoreau call types (both 
having order 1) and ending with the Thalia call type (having order 11). 
It can be seen from the scatter plots of Figure 12 that starting from the 
Randy and Thoreau call types, the two series of intermediate calls 
follow separate trajectories toward the Thalia call type. The sounds in 
the transformation series are arrayed in three-dimensional PCO space 
according to their generation order, as would be expected. However, 
the end points of the transformation series are closer to one another 
than each is to many of its intermediates. In addition, all of the 
natural call types plot closer together in PCO space than do many of 
the intermediates to either of the call types on which they are based. 

These results are a consequence of the SPCC values themselves 
and not a by-product of ordination by PCO analysis. Figure 13 shows 
selected SPCC values as a function of signal order in each morphing 
series. In addition to cross-correlation values for the full signals of the 
morphing series (that is, signals with naturally weighted harmonics), 
Figure 13 shows correlation values for signals composed of uniformly 
weighted fundamental contours only. Although it is most clear in the 
plots for the full signal correlations, even the plots for the fundamental 
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Figure 11. Examples from the morphing series showing the Thoreau (lla), 
Randy(11e), 70%Thoreau(llb), 70%Randy(llf), 40%Thoreau(llc), 40%Randy 
(llg), 10% Thoreau (lld), 10% Randy (llh), and Thalia (lli) call types. 
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contour comparisons show that the peak correlation values do not fall 
off monotonically as might be expected given the way the series was 
mathematically constructed. Rather, the slopes of the SPCC versus 
signal order curves start out negative, reach zero at the most 
intermediate call types, and then reverse. For instance, in Figure 13a 
the Randy call type (number 1 = 100% Randy) has a higher correlation 
value with the Thalia call type (number 11 = 0% Randy) than it does 
with the intermediate call type that is 70% Randy and 30% Thalia 
(number 4 = 70% Randy). If one examines the plots of Figure 13 
carefully, it becomes clear that adding naturally weighted harmonics 
amplifies, but does not distort, the patterns that are already visible in 
comparisons of fundamental contours. 

We believe that these results arise because of the nature of the 
morphing algorithm we selected and the specific character of Aratinga 
contact calls. The latter typically contain a series of rectangular 
frequency modulations in the center of the call moving between 
roughly 3 and 6 kHz. Calls of different individuals have different 
numbers of these modulations located at different points within the 
central section of the call. As a consequence, our morphing rule 
produced intermediates in which the modulations of one endpoint call 
have largely disappeared and those of the second endpoint call have 
yet to become apparent. The result is a series of gentler modulations 
around 4.5 kHz in the middle of the intermediate call. This 
intermediate call type clearly is so different from either endpoint call 
type, or in fact any other naturally occurring contact call type that we 
have recorded, that it results in a low SPCC value when compared to 
the latter. Again, it appears that the resulting SPCC values faithfully 
reflected the spectrographic information provided. 

DISCUSSION 

Our results have a number of important implications. First, SPCC­
PCO analysis appears to perform well with the classification and 
sorting of highly variable signal recordings. Even in the presence of 
random noise (with SNR ranging from -60 to +40 dB) and substantial 
fluctuations in signal duration (from 150 to 275 ms), signals with 
common time-frequency patterns formed discrete clusters in PCO 
space. Shared time-frequency pattern appears to be more important to 
the grouping of sound spectrograms using this method than are shared 
duration or signal-to-noise ratios. Second, SPCC-PCO analysis 
performs well in the comparison of harmonically rich sounds. Given an 
analysis bandwidth for spectrogram generation small enough to 
resolve signal overtones, a typical requirement for any spectrogram­
based classification method, SPCC-PCO analysis sorted our 
harmonically-rich test sounds according to common time-frequency 
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Figure 13. Plots of SPCC value re: the Thalia (13b,d), Randy (13a), or Thoreau 
(13c) call type versus file order in the morphing series (expressed as percent 
Randy or Thoreau call type). Plots are shown for SPCC comparisons made with 
sounds containing the fundamental contour only with uniform weighting (open 
circles), and the fundamental contour plus the next 14 harmonics with natural 
weightings (closed circles). 

patterns. Again, the method was able to accomplish this despite the 
presence of considerable variation in signal duration, background 
noise level, and harmonic weighting pattern. Finally, retention of the 
naturally-weighted higher harmonics in harmonically-rich signals 
does not hinder their classification via SPCC-PCO. In our study, the 
method was better able to generate statistically significant groupings 
for sample sets in which the sounds contained the naturally-weighted 
higher harmonics rather than the fundamental contour only. 

The implications of our findings are in contrast to the 
recommendations of Khanna et al. (1997). A detailed examination of 
their data showed that the reported sensitivity of SPCC values to FFT 
length when signals vary in duration or overtone content is largely a 
side effect of the time-frequency trade-off inherent in Fourier analysis. 
Spectrographic cross-correlation analysis is no more sensitive to 
selection of analysis window (FFT) size than is any other classification 
method based on spectrograms. That is, if a spectrogram does not 
resolve structural details well enough for standard measure or visual 
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classification methods, then it is unreasonable to expect that it will 
resolve them well enough for SPCC analysis. Only structural 
differences detectable within the effective resolution of a spectrogram 
will be detectable by spectrographic cross-correlation. 

The Khanna et al. study correctly reveals the danger of 
performing SPCC comparisons without examining the relevant 
spectrograms. Digital sound analysis programs, such as Signal or 
Canary, have made it easy for researchers to move from sound capture 
to SPCC similarity matrices directly. Those who use these methods, 
but never examine the relevant spectrograms, risk facing the pitfalls 
cited by Khanna et al. (1997). In choosing the analysis window length 
used in constructing spectrograms, a researcher imposes certain con­
straints on the resolution of the analysis. Patterns of signal time­
frequency structure that are smaller than the specified spectrogram 
resolution (which is a function of both windowing and FFT length) are 
undetectable. This has the advantage of letting the researcher decide 
what level of time-frequency structure is of interest for a particular set 
of sounds; however, it puts the burden of intelligent choice of analysis 
window and subsequent interpretation on the researcher. Obviously, 
only structural features that are visible given the effective resolution 
of the spectrogram will be detectable by cross-correlation analysis. A 
poor choice of analysis window size could result in biologically 
important features being missed. Our recommendation, therefore, is to 
always examine spectrograms before using SPCC to be sure that 
time-frequency features are portrayed as expected. Researchers 
interested in comparing sound sets at multiple structural levels can 
always use spectrograms generated at the appropriate multiple FFT 
lengths. 

The combination of SPCC and PCO analysis appears to have 
significant advantages over the current practice of applying 
hierarchical or k-means cluster analysis to SPCC similarity matrices. 
First, the eigen-decomposition of similarity matrices by PCO appears 
to allow the investigator to separate out contributions to SPCC values 
that are due to generally shared features from those idiosyncratic to 
single sounds. Because the order of principal coordinate extraction is 
determined by the amount of the original inter-object distance 
explained (akin to the amount of variance explained), the first few 
PCO coordinates turn out to be the ones that reflect the most generally 
shared structural details. Subsequent coordinates represent less of the 
overall variation; thus, they are more likely to reflect idiosyncrasies of 
individual calls. In contrast, cluster analysis is based on the entire 
similarity matrix: any kind of variation may affect the final 
classification. Another advantage of PCO is the reduction of the data 
space to a few important PCO axes. This provides the opportunity to 
view the ensemble of sounds in two or three dimensions. Such visual 
inspection, especially of animated (rotating) three-dimensional plots, is 
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extremely useful for seeing how different calls are related to each 
other. Similarly, one can calculate the location of and compute the 
distances between the centroids of different clusters of sounds in PCO 
space. Often researchers are interested in whether the clustered 
renditions of a song type of interest (type A) are on average more 
similar to one song type (type B) or to another (type C). Calculation of 
centroid distances can provide quantitative answers to such questions. 
Finally, principal coordinates analysis provides a set of composite 
measures (the PCO values) that can be used in statistical tests of 
association between sound structure and various external variables. 
These options are not available using cluster analysis. 

While the SPCC-PCO method appears robust when applied to 
single continuous sounds, it is likely to break down if applied to long, 
multi-syllable signals. Songs in which syllable order and structure 
were identical but the silent spaces between syllables varied would be 
difficult to align for cross-correlation. Low correlation values could 
arise simply because of variation in the length of silent sections 
between syllables. Readers should be aware of this if applying the 
SPCC-PCO method to long, multi-part sounds. However, if such 
sounds were highly stereotyped in syllable placement there is no 
reason why the method might not work well. We have not yet explored 
this application systematically and would be interested in the results 
of such efforts. 

As noted in the introduction, classification of sounds is only 
useful if class membership is significantly associated with some 
extrinsic contextual variable of interest. Janik (1998) refers to this as 
"external validity". While Janik emphasized the correspondence of 
sound classification and caller identity, it is important to note that 
there may be multiple criteria of external validity for a given set of 
sounds. Appropriate classification schemes might differ depending on 
whether the contextual variable were, for example: 1) habitat and its 
associated effects on sound propagation; 2) identity of the caller or its 
social unit; 3) the mechanism of sound production; 4) the way in which 
a receiver of that species categorizes the sounds; or 5) the behavioral 
function of those sounds. There is no reason to expect to find a single 
classification scheme for a set of sounds that is valid for all of these 
different contexts. Our method allows for statistical tests of external 
validity using different combinations of composite sound measures 
based on principal coordinates. Several coordinates can be considered 
at one time using MANOVA or LDA. These statistical analyses 
essentially perform a rotation of the PCO axes until a maximal level 
of sound separation is achieved based on factor level. If the separation 
between clusters is sufficiently great, given within-cluster spread, the 
association will be statistically significant. It may be necessary to 
rotate the PCO axes in a different way to show significant association 
with a different external factor. The canonical variates generated by 
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MANOVA indicate which principal coordinates are most important in 
effecting this association and the direction of their effect. In the case 
of the LDA, one can use stepwise LDA to find the subset of PCO 
coordinates that is best correlated with the external variable of 
interest. 

There is an obvious limitation of SPCC-PCO analysis when 
compared to standard measure techniques. Even if one finds a 
significant association between an external variable and a specific 
subset of the principal coordinates, one does not know which 
structural details in the spectrograms are the salient ones. In many 
studies, this is not a problem: one may simply want to know whether 
or not a significant association between sound structure and an 
external variable is present. The specific signal details generating this 
association may not be important to the question at hand. However, 
when it is necessary to identify the important structural details of the 
sound, one can subsequently take a set of standard measures and 
determine which ones are correlated with the significantly associated 
principal coordinates. Why bother with SPCC-PCO analysis if in the 
end standard measures must be taken anyway? The answer is that by 
using SPCC, as opposed to standard measures, one is less likely to 
miss the critical structural detail. As stated before, a finite set of 
measures, no matter how large, could still miss the structural features 
of a sound most closely associated with a particular external variable. 
All features of the sound spectrograms are taken into account, 
however, when making SPCC comparisons. Once a significant 
association between an external variable and a principal coordinate is 
found, a search criterion is established. One can then begin to look for 
those spectrographic details that are both correlated with the principal 
coordinate and with the external variable of interest. Thus, SPCC­
PCO analysis could be used effectively for the initial screening of data 
sets. 

Finally, while it is widely considered appropriate to compare 
only the fundamental contours of harmonically rich signals (Buck and 
Tyack 1993, McCowan 1995, Khanna et al. 1997, Janik 1999), our 
results suggest that this practice should be reconsidered. First, 
elimination of higher harmonics does not appear necessary. We find no 
evidence that harmonic structure undermines the validity or 
robustness of the SPCC-PCO method. In fact, our analyses demon­
strate that comparison of spectrograms with higher harmonics and 
their natural weightings tends to enhance the group separation pat­
terns seen in comparison of their fundamental contours only. Second, 
although the frequency information contained in the harmonics is 
redundant given the fundamental, the pattern information contained 
in the relative amplitude weightings of those harmonics is not. These 
amplitude weighting patterns could be correlated with extrinsic vari­
ables related to sound propagation, sound generation, caller identity, 
or sound function. Unless one knows a priori that the harmonic 
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amplitude weightings are irrelevant, it seems ill advised to exclude 
them from consideration. The pattern of the harmonic amplitude 
weighting functions provides an additional dimension for sound 
comparison not available with the fundamental contours alone. If the 
harmonics are equally weighted for all sounds in a set of sounds, 
however, retention of higher harmonics would provide no additional 
pattern information. Given the results of section IV it may be prudent 
to compare fundamental contours only in these cases. In general 
however, it seems that SPCC values generated by the comparisons of 
sounds with their full harmonic content will be most representative of 
the total information available to sound receivers. 
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APPENDIX 

Principal coordinates analysis: obtaining a multivariate representation of data from a 
matrix of between-object similarity or distance values 

What follows is a brief overview of the mathematical rationale behind the PCO 
method. The information provided here should enable interested researchers to 
implement the algorithm for performing the PCO analysis of SPCC or other similarity 
or distance matrices. A matrix-based programming environment such as Matlab (The 
Math Works, Inc.) would make such implementation especially straightforward. 
Readers interested in a more complete treatment of the PCO method are referred to 
Gower (1966, 1987), Neff and Marcus (1980), and Legendre and Legendre (1998). 

Suppose we are given a matrix D of distance measures between the n objects 
of a set 
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dln) 
... :~ 

nn 

Alternatively, we can begin with a matrix of similarity measures Sij that we convert 
to distance measures dij by some standard transform (for example, dij = 1 - Sij• or 
dij = Jl- Sij ). The entries dij can be transformed into new variables bij such that 

Why make this transformation? Suppose that we had access to the theoretical raw 
data matrix X consisting of the values Xij E 9t of some set of p variables measured for 
each of the n objects 

nobjs~ 

i
xn 

X = p v.Lar x~ 1 

xpl 

The coordinate vectors of any two given objects i and j relative to a basis composed 
of the p variables are 

So, the squared distance between the objects i and j is 

di] =[[Yi -yjll
2 

=(Yi -yj,Yi -yj) 

=(Yi -yS(Yi -yj)=YlYi +YlYj -2YlYj 

where ( ) denotes the standard inner product between two vectors. Assuming that our 
data have been standardized (so that there is zero mean and unit variance), then 

}nt }nn n }n 
- LYiYj =- L L xkixki = L xkj- LXki = 0. 
n i=l n i=l k=l k=l n i=l 

So, 
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and similarly, 

therefore, 

Now, define an inner product matrix B with elements bii= (yj,y1) = Y!Yj = (y~y1 = bii)· 
We see that, 

1( 2 t t ) 1( 2 1 n 2 1 n 2 1 n n 2) 
biJ = --

2 
diJ -YiYi -YjYj =--

2 
du --I dii -- Idii +2 I I dii 

n J~l n i~l n i~lJ~l 

the transform from above. So, by making this transformation, we can convert our 
matrix of absolute distances between objects to a matrix of inner products between 
object vectors whose common origin is the centroid of the standardized data. The 
absolute distances between the objects are unchanged; we have simply expressed their 
positional relationship in a different way by using vector inner products. Now, since 

[~' 
~2 ~ J [y:y, Y~Y2 ... Y:Y.l n 

B= b~1 b22 
... b~n = y~rl Y~Y2 

... y~~n = ~~ (YI Y2 ... Yn) 

bnl bn2 ··· bnn YnYl Y~Y2 YnYn Yn 

B = xtx. 

And since B is square symmetric, B is orthogonally diagonalizable, so 

ill!] 
where the A.j are the eigenvalues and Ui the corresponding orthonormal eigenvectors 
of B. From the summation, we see that the best approximation to the matrix B is 
provided by its largest eigenvalue and corresponding eigenvector. If we order the 
eigenvalues along the diagonal of A from largest to smallest, then 
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1 1 1 
- - -

Thus, j\=(/...1)2uwy2={}.1)2u 21,· .. ,yn=(/...1)2un1 are the coordinate vectors for the 
objects that best approximate their original inner products {y j.Yi) = yfy j- These 
coordinate vectors are actually just scalars Yi and they give the coordinates of the 
objects on the first axis (PCOl) that does the best job of approximating their original 
inner products. We see that these coordinates are simply the coordinates of the first 
eigenvector times the square root of its corresponding eigenvalue 

A Y2 .. 

[

-:'

1

] 1 
y= Y:n =(A.1)2ul. 

The coordinates of the objects on the second best axis (PC02) are the coordinates of 
the second eigenvector of B times the square root of its corresponding eigenvalue, and 
so on. 

Various measures can be used to assess the goodness of fit of the d PCO 
dimensions used. Some common relationships to quantify the degree of accuracy of the 

representation include 

d 

IA~ 
i~1 

n 

I A.~ 
i~1 

(Gower 1987), 

d 

IA; 
i~1 

n 

IIA.il 
i~1 

(Everitt and Dunn 1991), and 

d 

LA; 
i~1 

f/...i 
(Wong and Bergeron 1997), where AI> ... , A.ct are the first d positive eigenvalues 

i=l 

used in the approximation, A1, ... , Ap are all the positive eigenvalues, and A1, ... ,An are 
all the eigenvalues. 
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